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Analyses of reflector antenna surfaces use a computer program based on a discrete
approximation of the radiation integral. The calculation replaces the actual surface
with a triangular facet representation; the physical optics current is assumed to
be constant over each facet. This article describes a method of calculation using
linear-phase approximation of the surface currents of parabolas, ellipses, and shaped
subreflectors and compares results with a previous program that used a constant-
phase approximation of the triangular facets. The results show that the linear-phase
approximation Is a significant improvement over the constant-phase approximation,
and enables computation of 100-1,000) reflectors within a reasonable time on a

Cray computer.

l. Introduction

One of the simplest reflector antenna computer pro-
grams is based on a discrete approximation of the radia-
tion integral. This calculation replaces the actual reflec-
tor surface with a triangular facet representation so that
the reflector resembles a geodesic dome. The physical op-
tics (PO) current is assumed to be constant in magnitude
and phase over each facet, so the radiation integral is re-
duced to a simple summation. This program has proven to
be surprisingly robust and useful for the analysis of small
reflectors, particularly when the near-field is desired and
surface derivatives are not known.

It is natural to inquire whether a more sophisticated
approximation of the PO surface current will yield more
accurate results or permit the use of larger facets. In this
article, a linear-phase approximation of the surface cur-
rent is made. Within each triangular region, the resulting

integral is the two-dimensional Fourier transform of the
projected triangle. This triangular-shape function inte-
gral can be computed in closed form [1]. The complete
PO integral is then a summation of these transforms.

Once the current on the triangle is determined, the
linear-phase approximation takes about three times longer
to compute a field point than does the constant-phase ap-
proximation. Thus the time savings depend on reducing
the number of triangles required to achieve convergence.

Examples are given for scattering from parabolas, el-
lipses, and shaped surfaces. The general trend is similar
for all cases in that, depending upon the size of the tri
angles, there is an angular limit over which the solution
is valid. This angular limit is significantly larger with the
linear-phase approximation than with the constant-phase
approximation. Thus the linear-phase approximation can
be used to solve larger problems if core limitations are a
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problem, or alternatively, a smaller number of triangles
can be used to solve the same size problem.

ll. Analytical Details

The PO radiation integral over the reflector surface X
can be expressed [2]

1 . 1\ - NCRCLL
H(r):—4—ﬂ_[2<]k+ﬁ)RxJ,(r) 7 ds' (1)

in which r designates the field point, r’ the source point,
R = |r — 1’| is the distance between them, and R =
(r — r')/R is a unit vector. The PO surface current on
the subreflector surface J, is expressed

J,(r') = 2 x H,(r') (2)

For the purpose of analysis, the true surface ¥ is re-
placed by a contiguous set of N-plane triangular facets.
These facets, denoted A;, are chosen to be roughly equal
in size with their vertices on the surface X. Figure 1 shows
a typical facet and its projection onto the z-y plane. Let
(%i, i, z;) represent the centroid of each triangle where the
subscript i = 1,.--, N is associated with a triangle. Then,
the field obtained by replacing the true surface T by the
triangular facet approximation is

~jkR

H(r) = -%é/{) (jlc + %) It x J(r')e—R-ds’ (3)

In Eq. (3), J is now the equivalent surface current evalu-
ated on the triangular facets. Since the triangles are small,
it is expected that R and R do not vary appreciably over
the area of a given facet. Thus, let ﬁ,, and R; be the
value obtained at the centroid (&;,y:, ;) of each facet and
approximate Eq. (3) by

1
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ds’ (5)

Assume that the necessary transformations have been
performed so that the incident field H, is given in terms
of the reflector coordinate system. Then

J;(r') = 213; X H,(l") (6)

48

Next, assume that the incident field can be represented by
a function of the form

e_j kr,

H, = h,(r;) (M
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where r, is the distance to the source point. Then, Eq. (5)
can be written

ﬁ.‘ X h,(r,-)

e~ IR(REr) gy 8
27"R{7’,¢' A.‘ ( )

T.‘(I‘) =

To simplify the form of the integration, the surface Jaco-
bian is introduced within each triangular facet A;. For a
planar surface z; = fi(z,y), a normal is given by

Ni=—Xfri —¥fy +2 (9)
where
0, _ ok
f.m = 81’ fyt = 6y

and a unit normal is given by

o Ni
n'_|Ni| (10)

This permits the explicit evaluation of the Jacobian as

1/2
Ja, =|N; |= [f,.?,- g 1] (1)

Making use of the Jacobian then allows Eq. (8) to be
rewritten as

i; X 11,(1‘,') —ik(R
Ti(r) = ——=—=Ja, e IR(RAT) dpt dy! 12
1( ) 27TR,'7'“' A A Y ( )
in which A} represents the area of the ith triangular facet
projected onto the z = 0 plane. Now, make a Taylor-series
expansion of the exponent in Eq. (12). Retaining only the
first-order terms, one can formally write

R(e,p) 4 ey = pla—we—wy) (19

in which a;, v;, and v; are constants. This approxima-
tion corresponds to a far-field approximation on the ith
triangle. With this approximation, Eq. (12) reduces to
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It may now be observed that this integral is the two-
dimensional Fourier transform of the ith projected triangle
Al, expressed as

S(u,v):/ W) drdy (15)
AI

In order to explicitly evaluate the constants in Eq. (13),
note that the equation of a plane can be expressed as

z = (1" - zi)fxi + (y - yi)fyi + 24
This can be used to obtain

a; = kR(z;,y;) + kro(zi, yi) + wizi +viy; (16)

(zy —xi) + (25 — 2i) fi
ra(xi, i)

Ui _ (‘L'p —2) + (2p — 2i) fui
ko R(zi, i)

(17)

(ys — i) + (25 — 2:) fyi
rs(Yi, i)

v (Wp—w) +(zp—mdfyi |
k R(yilyi)

(18)

Placing the result of Eq. (16) into Eq. (14), and recall-
ing Egs. (6) and (7), yields

e_jknt

Ty(r) = Ji(ri)Ja, e 78IS (u;, v)) (19)
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This is the final form of the linear-phase approximation
over each triangular facet. This expression can be used in
Eq. (4) to compute the radiation integral once the Fourier
transform of a triangular shape function S(u, v) is known.
Fortunately, this transform can be computed in closed
form [1] from the expression

3
S(u,v) = elurntevn)

n=1

pn-—l _pﬂ ( )
(u + pn—lv)(u + Pn ‘v)

in which (zn,y,) are the coordinates of the triangle ver-
tices numbered in a clockwise direction. The slope of the
nth side (between corners n and n + 1) is given by

Pn = Yn41 — Un (21)
In41 — ITn

Some attention must be given to the following special
cases. First, if ¥ = v = 0, the transform reduces to the
formula for the area of a triangle

S5(0,0) = —% zl(yg—y3)+xg(y3—y1)+:r3(y1—yg)] (22)

Next, if u/v — —py,, then

Pn41 — Pn-1
U2(Pn+1 - pn)(Pn—l - pn)

lim  S(u,v) =

ufv——pa

X [ej(uzn—l+vyn—l) — ej(urn+“?ln)

4 (ﬁ.}.xjv_—xn_)ej(u::n+uyn) (23)

lIl. Numerical Results

A FORTRAN subroutine was written to perform the
linear-phase calculations indicated above. Test cases were
run for parabolas, ellipses, and shaped subreflectors, and
the results were compared with the previous program,
which used a constant magnitude and phase approxima-
tion on the triangular facets. A focused parabola is nei-
ther an interesting nor a challenging case for the algo-
rithm, since the phase variation over the facet is small.
As a simple test case, the far-field pattern and gain of a
1,000A-diameter parabolic reflector with a focal length of
F = 400\ was calculated. The reflector is illuminated by a
linearly polarized horn with a cos ¢ pattern function. Fig-
ure 2 compares the linear- and constant-phase approxima-
tion for a roughly equally spaced 80-by-80 rectangular grid
of points divided into triangles over the reflector surface
(approximately 10,000 triangles). The running time on a
Cray X-MP was less than one minute. It has been previ-
ously demonstrated {3,4,5] that, once sufficient triangles to
converge the solution have been utilized, the results of the
constant-phase algorithm are valid, so only comparisons of
the two techniques are presented.

A more interesting example is the ellipse shown in
Fig. 3. The projected aperture of the ellipse is about 3 m,
illumination function is a cos*? @ pattern function (22.3-
dB gain), and the frequency is 31.4 GHz. The ellipse is
about 350\ along the major axis. Figure 4 compares the
constant-phase approximation for different grid densities
of approximately 4,000, 10,000, and 23,000 triangles and
illustrates a general trend of the method, i.e., depending
on the size of the triangles, there is an angular limit over
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which the solution is valid. Figure 5 compares the linear-
phase approximation with the constant-phase approxima-
tion for the 4,000-triangle case and demonstrates that the
angular range is larger with the linear-phase approxima-
tion.

A third example is the shaped subreflector shown in
Fig. 6. The diameter is 3.42 m (135 in.), and it is fed
with a cos?33 ¢ pattern function (29.7-dB gain). Fig-
ure 7 compares the results of a 4,000- and 10,000-triangle
grid constant-phase approximation with a 4,000-triangle
linear-phase approximation. The frequency of operation is
2.3 GHz, hence, the subreflector is about 26\ in diameter.
The 10,000-triangle constant phase is the converged result,
and the 4,000-triangle linear case gives the same result.
A very good approximation is also obtained with a 1,400-
triangle grid for the linear case, but no meaningful results

are obtained with the constant-phase case. Figure 8 gives
the linear-phase result for 31.4 GHz (360X subreflector)
using 23,000 triangles. No meaningful result is obtained
for the equivalent constant-phase case.

Most of the examples given are for large reflectors to il-
lustrate the robust character of the technique. For smaller
reflectors (< 100)), meaningful results can be obtained on
a PC in a reasonable time.

IV. Conclusions

The linear-phase approximation is a significant im-
provement over the constant-phase approximation and en-
ables the computation of fairly large (100 to 1,000)) re-
flectors in a reasonable time (on the order of minutes) on
a Cray computer.
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Fig. 1. Reflector analysis coordinate systems and a typical
triangular facet.
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Fig. 7. Shaped subreflector example for H-plane at 2.3 GHz.
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Fig. 8. Shaped subreflector, 31.4 GHz.



